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Abstract—Demand response has gained significant attention
in recent years as it demonstrates potentials to enhance the
power system’s operational flexibility in a cost-effective way.
Industrial loads such as steel manufacturing plants consume large
amounts of electric energy, and their electricity bills account for a
remarkable percentage of their total operation cost. Meanwhile,
lots of industrial loads are very flexible in terms of adjusting their
power consumption rate, e.g. through switching the transformer
tap position. Hence, industrial loads such as the steel plants have
both the motivation and the ability to support power system
operation through demand response. In this paper, we focus on
the steel plant and optimize its scheduling to maximize its profits
from both the energy and the spinning reserve markets.

Index Terms—Demand response, spinning reserve, industrial
load, resource-task network (RTN), steel plant.

I. INTRODUCTION

Increased operational flexibility is an inherent characteristic

of what is commonly referred to as the smart grid. This is

because a large share of renewable generation resources such

as wind and solar generation are expected to be deployed to

enable a sustainable energy future. However, the power output

of these renewable resources is intermittent and uncertain

which requires significant amounts of balancing resources to

increase the operational flexibility of the grid. Traditionally,

the power system relies on generators to provide such flexibil-

ity, but it is not economical for generators to frequently change

their output. Hence, demand response has gained significant

attention in recent years as it demonstrates potentials to

enhance the power system’s operational flexibility in a cost-

effective way [1]–[3]. There have been intensive discussions

and promising solutions for demand response provided by

buildings [4], storage [5], data centers [6], [7], residential

areas [8], as well as industrial loads [9]–[11].

Within the realm of demand response, industrial loads have

the following advantages [12], [13]: the magnitude of power

consumption by an industrial manufacturing plant and the

change in power it can provide are generally very large;

besides, the industrial plants usually already have the infras-

tructures for control, communication and market participation,

which enables the provision of demand response; moreover,
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some industrial plants are able to offer fast and accurate adjust-

ments in their power consumption [9], [14]. Among these in-

dustrial loads, steel manufacturing is a highly energy-intensive

process and also has the required consumption flexibility. A

steel plant with electric arc furnaces has a limited capability

to schedule its production activities to follow a desired energy

consumption profile over time. A steel plant can reduce its

loading level drastically by controlling the transformers that

supply power for its equipment, which enables the provision

of spinning reserves.

Besides their capability, industrial plants also have the in-

centive to actively contribute to the electricity markets through

demand response programs. Nowadays, with the needs for

industrial materials slowing down, and the competition from

all over the world, industrial plants such as aluminum smelters

and steel manufacturing plants have experienced a hard time

in recent years, especially in developed countries [15], [16].

Demand response could be an opportunity for these industrial

plants to make use of their assets and increase their profits.

For instance, the industrial plants can move the most energy-

intensive activities to off-peak hours thereby reducing their

electricity bills; in addition, they can also sell ancillary ser-

vices to the electricity markets by effectively utilizing their

operational flexibility.

In this paper, we study the participation of the steel plants

in demand response. The steel plant is assumed to be a

participant in the day-ahead electricity markets, both energy

and spinning reserve markets, and we want to optimize its

scheduling of production activities to maximize its revenues

from the electricity markets. The remaining of the paper is

organized as follows: Section II introduces the scheduling

problem that we are interested in; Section III explains the

resource task network approach that we use to model the

steel plant scheduling problem; in Section IV, the optimal

scheduling model is proposed and described; the case study of

a typical steel plant is discussed in Section V, based on which

the conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

The considered steel production process is illustrated in

Fig. 1. There are four stages in the production. In the first

stage, the solid metal scrap (e.g. recycled from abandoned

cars) is transformed to molten metal in the electric arc furnaces



(EAF); then, the impurities in the molten steel such as carbon

elements are extracted by the argon oxygen decarburization

(AOD) units in the second stage; in the ladle furnaces (LF)

stage, the molten metal gets refined and the quality of the

metal is further improved; and finally, the molten metal is

casted into slabs by the continuous casters (CC). The slabs

are the final products of the melt-shop production, and they

can be classified into different categories according to their

steel grade, slab width, slab thickness and so on.

For the first three stages, the equipment processes a par-

ticular amount of metal at one time. That particular amount

depends on the size of the equipment units, e.g. the volume of

the furnace. Each such amount of metal is termed as a heat.

Using the definition of heats, we can quantify the throughput

of the steel plant, e.g. a medium-sized steel plant produces

around 20 heats a day. For the fourth stage, the casters operate

continuously but subject to certain critical constraints: the

casters are only allowed to process a limited number of heats

after which they need maintenance (e.g. changing the caster

mold and tundish). Usually a campaign of several heats sharing

the same or very similar features such as steel grade and

slab shape are casted together as a campaign group, and the

casters can be maintained between these campaign groups.

The casting order for the heats within one group should follow

certain rules and the casting sequence must not be interrupted.

The power consumption rate of the EAFs can be adjusted

very quickly by switching the on-load tap changers (OLTCs)

of the transformers which supply power to the EAFs. This

qualifies the steel plant to be a valid demand response resource

for providing spinning reserve. The amount of spinning reserve

it can provide depends on the melting power profile, i.e.

the power consumption rate of the melting process, and the

sustaining (minimal) power the furnace requires to keep the

molten metal from solidification.

The payment structures for spinning reserve are different

across different electricity markets. In most North American

electricity markets, e.g. the Midwest Independent System Op-

erator (MISO) where demand response is actively encouraged

and where an aluminum smelter (Alcoa’s Warrick Operation)

has participated as a regulation provider for the first time,

spinning reserve is compensated by both reserve capacity

and actual allocation. In other words, the spinning reserve

provider gets paid for the capacity it has committed to provide

independent of if this reserve capacity is dispatched or not; and

if it does get dispatched, it receives an additional payment as

the allocation compensation. However, the actual dispatch of

spinning reserve is very rare. According to Alcoa’s Warrick

Fig. 1: Production process of steel manufacturing [17]

Operation, the regulation provider we previously mentioned

who is also offering spinning reserve to MISO, their so-

called interruptible load (i.e. spinning reserve) only gets 55

deployments annually with an average length of 42 minutes,

resulting in an actual dispatch rate of only around 0.44% [14].

Even if the capacity payment rate is fairly low, the spinning

reserve providers still find it profitable as they earn money

simply by standing by and waiting.

In this paper, we consider the participation of the steel plant

in a day-ahead electricity market, from the perspective of the

steel plant scheduling. The scheduling horizon is one day. The

daily production activities, i.e. the heats to produce, are known

ahead according to the business contracts and the long-term

scheduling. The hourly prices of the day, both energy and

spinning reserve, are assumed to be known ahead: these prices

may be part of a given demand response program contract or

they could also be obtained by prediction techniques. Given

the production activities and their power profile, the steel plant

optimizes the scheduling to minimize its net cost - the cost

of electric energy minus the revenue from spinning reserve

provision. Of course, the steel plant endures other aspects of

cost such as labor, metal scraps, chemical ingredients and so

on. But all these costs are fixed in the daily operation and

therefore we do not take them into account in the operation op-

timization process. Furthermore, the impact of actual dispatch

of spinning reserve is not considered in this daily scheduling

problem, as the dispatch rate is very low and it should be

taken into account in a longer term, e.g. weekly or monthly,

optimization problem.

III. RESOURCE TASK NETWORK MODELING

We model the steel plant and its production activities

through a resource task network (RTN) approach. Figure 2

provides an illustration of the RTN of a steel plant. The

circles represent resources such as equipment units used in

different stages, intermediate and final products for different

heats, electric energy usage and spinning reserve provision.

As intermediate products are transferred from one stage to the

next, they are super-indexed with s or d to specify their current

locations (start or destination, respectively). For example, EAd
h

represents the intermediate product between stage EAF and

AOD that has already been transferred to the AOD stage

and is waiting to be processed. The RTN modeling in this

paper also employs resources of electric energy (EN) and

spinning reserve (SP) to help accumulate the plant’s energy

usage and reserve provision. The set of resources in the steel

plant is denoted by S, i.e. S = {EAF, AOD, LF, CC} ∪
{EAs

h,EAd
h,ALs

h,ALd
h,LCs

h,LCd
h,Hh|h ∈ H}∪{EN,SP} with

H as the set of heats to produce. We use a matrix Y ∈ R|S|×T

to denote the amount of each resource available at all time

slots, in which |S| is the size of S; we use a discrete time grid

with uniform time slot width of t0, and T is the total number

of time slots. Each element of Y is a continuous variable,

ys,t, which stands for the available amount of resource s at

time t. For example, yEAF,t = 2 means there are two furnaces

available at time slot t; yEAd
h
,t = 0 means either intermediate

product EAd
h has not been transported to AOD yet or has



Fig. 2: Resource task network for a steel plant.

already been processed by AOD, while yEAd
h
,t = 1 means EAd

h

is there waiting to be processed; yEN,t = 100 MWh means the

steel plant uses 100 MWh electric energy during time slot t;

ySP,t = 50 MW means the plant provides 50 MW of spinning

reserve to the power system. Actually, most ys,t can only take

discrete values such as 0, 1, or 2. However, we model them as

continuous variables for computational considerations, but as

discussed later the constraints in the optimization model will

enforce them to take discrete values.

The tasks are denoted by rectangles in Fig. 2. There are

two types of tasks: the operational tasks at each of the four

stages and the transfer tasks between the stages. There is

one task for every heat h for each type of operation and

transfers except for the casting; these tasks are denoted by

the task type sub-indexed with the corresponding heat, e.g.

Eh stands for the melting of heat h in the EAF stage, and

EAh (without super-index s or d) denotes the transfer of heat

h between stage EAF and AOD. Unlike the first three stages

where parallel units are not distinguished, we treat the casters

individually because different casters are designed for casting

different slabs. Besides, as mentioned before, the tasks in the

CC stage are executed by group instead of by heat. Therefore,

the casting task is denoted by Cg,u which corresponds to the

casting of group g by caster unit u. Note that Cg1,u1
is different

from Cg1,u2
. For example, their casting durations might be

different due to the different casters. Of course, only one of

Cg1,u1
and Cg1,u2

will actually take place as group g1 should

be casted exactly once. We use K to denote the set of tasks,

i.e. K = {Eh,EAh,Ah,ALh,Lh,LCh|h ∈ H} ∪ {Cg,u|g ∈
G, u ∈ CC}, with G and CC as the set of casting campaign

groups and available casters, respectively.

A |K|-by-T binary matrix X is used to denote the starting

times of tasks, in which |K| is the size of K. Each element of

X is a binary variable xk,t that denotes whether task k starts at

time slot t. For instance, xEh,t denotes whether the processing

(melting) of heat h in stage EAF starts at time slot t or not.

Hence, only one out of xEh,t, t = {1, . . . , T } is non-zero.

Fig. 3: Illustration of interaction parameters for a melting task.

In Fig. 2, the networks are represented by arrows which

indicate how each task interacts with each resource. For each

task k ∈ K whose duration is τk time slots, the interaction

parameter ∆k is a |S|-by-(τk + 1) matrix that quantifies how

much task k consumes or generates of each of the resources

as it proceeds. For instance, its element ∆k
s,1 quantifies the

interaction between task k and resource s at the beginning

of the first time slot during this task, and ∆k
s,τk+1 quantifies

the interaction at the end of the last time slot. ∆k is very

sparse and a zero element means that there is no interaction.

The interaction parameters for a melting task are illustrated

in Fig. 3. The time slot width in Fig. 3 is t0 = 15 minutes.

The duration of the melting task is 45 minutes. Therefore, the

melting spans 3 time slots. This task interacts with resources

EAF, EN, SP and EAs
h, and its interaction parameter matrix

only has four rows with nonzero elements. At the very

beginning, the task reduces EAF by one as it uses one furnace.

After the completion of the melting process, EAF is increased

by one as that furnace is freed up. Also, EAs
h is increased by

one to promote the execution of the following transfer. The



melting task consumes electric energy continuously during its

entire duration. The sustaining power is assumed to be 48 MW,

hence, it can provide 32 MW spinning reserve for each time

slot.

IV. OPTIMAL SCHEDULING

The scheduling model in this section is based on the

Aggregated Equipment Resource and Simple Transfer Tasks

model from [17], and has been updated to incorporate spinning

reserve provision. As discussed in Section II, the following

scheduling model does not consider the impact of actual

dispatch of spinning reserve, as the actual dispatch is very

rare and we assume that there is no actual dispatch in the

scheduling horizon.

A. Constraints

1) Resource Balance: Resource evolution over the time

horizon is managed by the resource balance equation, as in

ys,t = ys,t−1+
∑

k∈K

τk∑

θ=0

∆k
s,θ ·xk,t−θ ∀s ∈ S¬{EN,SP}, ∀t (1)

in which the value of resource s at time step t is equal to

its previous value at t − 1 adjusted by the amounts gener-

ated/consumed by all the tasks. Only nonzero ∆k
s,θ implies

actual interaction and the interaction only occurs when task k

is proceeding, i.e., the interaction occurs at time slot t only

if task k starts θ earlier than t (xk,t−θ = 1) and ∆k
s,θ 6= 0.

S¬{EN,SP} stands for the set of all the resources except EN

and SP. For any resource s ∈ S¬{EN,SP}, its initial value

is integer: the initial value is zero for any intermediate or

final product, and the initial value for any equipment equals

to the number of units available in the steel plant. Since the

interaction parameters ∆k
s,θ for these resources are integers

and xk,t−θ are binary variables, the ys,t can only take integer

values due to constraint (1). As mentioned before, even though

ys,t only take integer values, we model them as continuous

variables to reduce the computation burden for this mixed

integer programming problem.

The electric energy usage of the steel plant is calculated as

yEN,t =
∑

k∈K

τk∑

θ=0

∆k
EN,θ · xk,t−θ ∀t (2)

where ∆k
EN,θ is the electricity used by task k at the θ-th

time slot duration of its execution. We assume that only the

EAF can provide spinning reserve, and the provided spinning

reserve should be upper bounded by its availability, as given

by

ySP,t ≤
∑

k∈{Eh|h∈H}

τk∑

θ=0

∆k
SP,θ · xk,t−θ ∀t (3)

with ∆k
SP,θ denoting the available spinning reserve.

2) Task Execution: We use the following constraints to

make sure that the tasks are executed the proper number of

times, as in

XK¬CC
1T = 1

1

′XCu
1T = 1 ∀u ∈ CC

(4)

in which XK¬CC
denotes X without the rows involving the

casting tasks; XCu
denotes the rows of X corresponding to

casting tasks by caster u; 1T means a vector of 1s with length

T and 1 stand for vectors of 1s with appropriate lengths. The

above constraints ensure that each heat is processed exactly

once by all types of tasks within the scheduling horizon.

3) Waiting Time: In steel plant operations, it is common to

enforce the transfer task to be executed immediately after the

completion of its preceding processing task. This requirement

is reflected by enforcing

YEAs = 0 (5)

in which YEAs stands for the rows of Y corresponding to

the intermediate products EAs; 0 is a zero matrix with the

same dimensions as YEAs . Similar constraints apply for the

intermediate products ALs and LCs.

The transfer time of the intermediate products, wEA, wAL,

and wLC, are assumed to be independent of the specific heats

and the exact locations of the units. We use w̄EA, w̄AL, and

w̄LC to denote the maximum allowable transportation times

that ensure that the intermediate products are processed by

the next stage in time before the cooling effects adversely

affect the product quality. Therefore, the maximum waiting

time constraint for intermediate products should be satisfied,

YEAd
h

1T ≤
(w̄EA − wEA)

t0
1 (6)

in which YEAd stands for the rows of Y corresponding to

intermediate products EAd before the transfer. The left side

of the constraint corresponds to the number of time slots

during which the intermediate product is waiting before being

processed. Similar constraints apply for intermediate products

ALd and LCd.

4) Product Delivery: The final products should be available

at the end of the time horizon, which is enforced by

yHh,T = 1 ∀h (7)

in which yHh,T stands for the availability of the final product

for heat h at the end of the scheduling horizon.

5) Spinning Reserve Provision: Spinning reserve is traded

hourly in most electricity markets. The time slot width in the

discrete time formulation is usually smaller than the trading

window. Once the reserve provider has committed to the

market an hourly quantity, it is obligated to guarantee that

amount of reserve for any time slot in that hour. In other

words, the time slots belonging to the same hour (Thr) should

provide the same amount of spinning reserve, as enforced by

ySP,t − ySP,t′ = 0 ∀t, t′ ∈ Thr (8)
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Fig. 4: MISO hourly prices on 02/06/2014.

B. Objective Function

The objective of the scheduling is to minimize the net cost

of the steel production, i.e. the electric energy cost minus

the spinning reserve revenue. Given the energy and spinning

reserve price vectors λEN, λSP ∈ RT , the overall optimization

problem is formulated as

minimize
X

YENλEN − YSPλSP

subject to (1)− (8)

xs,t ∈ {0, 1}, ys,t ∈ [0, ȳs], ∀s, ∀t

in which ȳs is the upper bound for the available amount of

resource s. For example, ȳEAF equals to the number of EAF

furnaces and ȳEN equals to the summation of energy usage by

all the equipment units in one time slot.

V. CASE STUDY

In this section, we present the study of the daily scheduling

for a typical steel plant to demonstrate the effectiveness of the

optimal scheduling model.

A. Problem Parameters

The hourly energy and spinning reserve prices for the case

study are taken from MISO, as displayed in Fig 4. Note that the

spinning reserve (capacity) prices follow the trend of energy

prices, but are much lower. In practice, the hourly prices are

obtained either from demand response contracts, e.g. time-

of-use pricing programs, or price prediction techniques. For

the latter case, the prices are uncertain and are decided by

the markets, and we have to rely on price prediction tools.

We could simply use the point-wise price prediction or the

expected price if its distribution is available. Note that the

constraints in Section IV do not involve any price information.

The steel plant layout and parameters are taken from the

typical scheduling example in [17] and are restated here. There

are two parallel units for each of the four stages, and the

TABLE I. Nominal power consumptions [MW] [17]

equipment EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

power 85 85 2 2 2 2 7 7

TABLE II. Steel heat/group correspondence [17]

group G1 G2 G3 G4 G5 G6

heats H1−H4 H5−H8 H9−H12 H13−H17 H18−H20 H21−H24

TABLE III. Nominal processing times [min] [17]

heats EAF1 EAF2 AOD1 AOD2 LF1 LF2 CC1 CC2

H1−H4 80 80 75 75 35 35 50 50
H5−H6 85 85 80 80 40 40 60 60
H7−H8 85 85 80 80 20 20 55 55
H9−H12 90 90 95 95 45 45 60 60
H13−H14 85 85 85 85 25 25 70 70
H15−H16 85 85 85 85 25 25 75 75
H17 80 80 85 85 25 25 75 75
H18 80 80 95 95 45 45 60 60
H19 80 80 95 95 45 45 70 70
H20 80 80 95 95 30 30 70 70
H21−H22 80 80 80 80 30 30 50 50
H23−H24 80 80 80 80 30 30 50 60

nominal power consumption rates of the units are given in

Table I. The group correspondences of the heats to produce are

given in Table II, and their nominal processing times are shown

in Table III. It can be observed from these tables that the EAF

is the most energy-intensive process stage. The transfer times

wEA, wAL, and wLC are 10, 4, and 10 minutes respectively, and

the maximum waiting times w̄EA, w̄AL, and w̄LC are 240, 240,

and 120 minutes. The caster setup times are 70 minutes for

CC1 and 50 minutes for CC2, which are the times needed for

equipment maintenance between casting two groups of heats.

The sustaining power needed for spinning reserve provision is

assumed to be 60% of the nominal EAF melting power.

B. Scheduling Results

The optimal scheduling results of the model in Section IV

are given in Table IV, in which t0 is set as 15 minutes. The

four rows correspond to different scenarios with respect to how

many and which groups are being scheduled and processed

in the simulation. The column Groups gives the campaign

groups to produce, e.g. the first row denotes scheduling group

1, 2, and 3 with the heats as indicated in Table II; w/o

SP stands for the scheduling model without spinning reserve

provision, which corresponds to the above model but without

the resource SP and only minimizing electric energy cost;

with SP is the scheduling model described in Section IV

including spinning reserve; the column Obj represents the final

objective value of the optimization problem; the column EN

stands for the electric energy cost while the SP represents

the spinning reserve revenue. All these optimization problems

are mixed integer linear programming problems and we solve

them in MATLAB by TOMLAB/CPLEX on a linux 64 bit

machine. The relative optimality tolerance is set as 10−6, and

all these optimization problems are solved to optimality within

three minutes. With spinning reserve participation, the electric

energy cost increases a little bit, but the net cost of the steel

plant operation is reduced because of the spinning reserve

revenues. The decrease for the case studies here are around

1%.

We also set t0 as 10 minutes to study the scheduling with

a finer time grid. The optimal scheduling results are listed in

Table V. The time limit for CPLEX is set to 2 hours. For

scheduling groups 1-5 under both w/o SP and with SP, the

relative objective gap between the best integer objective (by a

feasible solution) and the best bound remaining in the iteration

process are 0.02%. Compared with the results in Table IV, the

final objective values in Table V are slightly improved because

the rounding error due to discrete-time formulation is reduced



TABLE IV. Optimization results with t0 = 15min

w/o SP with SP

Groups Obj(k$) Obj(k$) EN Cost(k$) SP Revenue(k$)

1-3 39.307 39.002 39.321 0.319
1-4 57.824 57.357 57.864 0.507
1-5 69.731 69.157 69.897 0.741
1-6 86.346 85.508 86.474 0.966

TABLE V. Optimization results with t0 = 10min

w/o SP with SP

Groups Obj(k$) CPU Time(s) EObj(k$) CPU Time(s)

1-3 39.041 397.7 38.651 739.7
1-4 57.517 637.8 57.009 1094.7
1-5 69.162 7200.0 68.468 7200
1-6 85.228 916.0 84.164 3569.7

by using a finer time grid. However, the computation time in

Table V grows drastically as the number of variables (both

integer and continuous) increases by a factor of 1.5.

The equipment assignment chart for scheduling 24 heats

with spinning reserve provision is displayed in Fig. 5. The

rectangles denote the tasks. Different heats are represented

by different colors. From Fig. 5 we can observe that the

scheduling solution is valid: each heat is processed sequen-

tially by each stage; each campaign group of heats are casted

together without any interruption, and there is enough time for

caster maintenance between each two campaign groups on the

same caster; for any time slot, each equipment is occupied

by one single task and there is no conflict in equipment

assignment. Figure 5 also shows that the RTN model is able

to generate detailed and practical schedules that can be easily

understood by the steel plant operators. The corresponding

spinning reserve provision schedule is displayed in Fig. 6.

The maximum spinning reserve provided is around 70 MW.

The spinning reserve provision cannot always stay at the

maximum value due to constraint (8). The hourly spinning

reserve provision should be less or equal to the available

spinning reserve in any time slot of that hour.

VI. CONCLUSION

The RTN-based scheduling model for the steel plant is able

to optimize the steel plant’s production activities such that it

can benefit the most from electricity markets. The steel plant is

able to make use of the electric arc furnaces to offer spinning

reserve services to the electricity markets and earn revenues.

With the provision of spinning reserve, the steel plant could

further lower its operation net cost. The proposed scheduling

Fig. 5: Equipment assignment for scheduling 24 heats.
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Fig. 6: Spinning reserve provision from scheduling 24 heats.

model is computationally effective and can generate detailed

and practical production schedules.
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